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Abstract

Enrichment analysis has been widely applied in the genome-wide association studies (GWAS), 

where gene sets corresponding to biological pathways are examined for significant associations 

with a phenotype to help increase statistical power and improve biological interpretation. In this 

work, we expand the scope of enrichment analysis into brain imaging genetics, an emerging field 

that studies how genetic variation influences brain structure and function measured by 

neuroimaging quantitative traits (QT). Given the high dimensionality of both imaging and genetic 

data, we propose to study Imaging Genetic Enrichment Analysis (IGEA), a new enrichment 

analysis paradigm that jointly considers meaningful gene sets (GS) and brain circuits (BC) and 

examines whether any given GS-BC pair is enriched in a list of gene-QT findings. Using gene 

expression data from Allen Human Brain Atlas and imaging genetics data from Alzheimer’s 

Disease Neuroimaging Initiative as test beds, we present an IGEA framework and conduct a 

proof-of-concept study. This empirical study identifies 12 significant high level two dimensional 

imaging genetics modules. Many of these modules are relevant to a variety of neurobiological 

pathways or neurodegenerative diseases, showing the promise of the proposal framework for 

providing insight into the mechanism of complex diseases.
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1 Introduction

Brain imaging genetics is an emerging field that studies how genetic variation influences 

brain structure and function. Genome-wide association studies (GWAS) have been 

performed to identify genetic markers such as single nucleotide polymorphisms (SNPs) that 

are associated with brain imaging quantitative traits (QTs) [15, 16]. Using biological 

pathways and networks as prior knowledge, enrichment analysis has also been performed to 

discover pathways or network modules enriched by GWAS findings to enhance statistical 

power and help biological interpretation [5]. For example, numerous studies on complex 

diseases have demonstrated that genes functioning in the same pathway can influence 

imaging QTs collectively even when constituent SNPs do not show significant association 

individually [13]. Enrichment analysis can also help identify relevant pathways and improve 

mechanistic understanding of underlying neurobiology [6,10,11,14].

In the genetic domain, enrichment analysis has been widely studied in gene expression data 

analysis and has recently been modified to analyze GWAS data. GWAS-based enrichment 

analysis first maps SNP-level scores to gene-level scores, and then test whether a pre-

defined gene set S (e.g., a pathway) is enriched in a set of significant genes L (e.g., GWAS 

findings). Two strategies are often used to compute enrichment significance: threshold-

based [3, 4, 8, 19] and rank-based [17]. Threshold-based approaches aim to solve an 

independence test problem (e.g., chi-square test, hypergeometric test, or binomial z-test) by 

treating genes as significant if their scores exceed a threshold. Rank-based methods take into 

account the score of each gene to determine if the members of S are randomly distributed 

throughout L.

In brain imaging genetics, the above enrichment analysis methods are applicable only to 

genetic findings associated with each single imaging QT. Our ultimate goal is to discover 

high level associations between meaningful gene sets (GS) and brain circuits (BC), which 

typically include multiple genes and multiple QTs. To achieve this goal, we propose to study 

Imaging Genetic Enrichment Analysis (IGEA), a new enrichment analysis paradigm that 

jointly considers sets of interest (i.e., GS and BC) in both genetic and imaging domains and 

examines whether any given GS-BC pair is enriched in a list of gene-QT findings.

Using whole brain whole genome gene expression data from Allen Human Brain Atlas 

(AHBA) and imaging genetics data from Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) as test beds, we present a novel IGEA framework and conduct a proof-of-concept 

study to explore high level imaging genetic associations based on brain-wide genome-wide 

association study (BWGWAS) results. For consistency purpose, in this paper, we use GS to 

indicate a set of genes and BC to indicate a set of regions of interest (ROIs) in the brain. The 

proposed framework consists of the following steps (see also Figure 1): (1) use AHBA to 

identify meaningful GS-BC modules, (2) conduct BWGWAS on ADNI amyloid imaging 

genetics data to identify SNP-QT and gene-QT associations, (3) perform IGEA to identify 

GS-BC modules significantly enriched by gene-QT associations using threshold-based 

strategy, and (4) visualize and interpret the identified GS-BC modules.
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2 Methods and Materials

2.1 Brain Wide Genome Wide Association Study (BWGWAS)

The imaging and genotyping data used for BWGWAS were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). One goal of ADNI 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early AD. For up-to-date information, see www.adni-info.org. Preprocessed 

[18F]Florbetapir PET scans (i.e., amyloid imaging data) were downloaded from 

adni.loni.usc.edu, then aligned to each participant’s same visit scan and normalized to the 

Montreal Neurological Institute (MNI) space as 2 × 2 × 2 mm voxels. ROI level amyloid 

measurements were further extracted based on the MarsBaR AAL atlas. Genotype data of 

both ADNI-1 and ADNI-GO/2 phases were also downloaded, and then quality controlled, 

imputed and combined as decribed in [9]. A total of 980 non-Hispanic Caucasian 

participants with both complete amyloid measurements and genome-wide data were studied. 

Associations between 105 (out of a total 116) baseline amyloid measures and 5,574,300 

SNPs were examined by performing SNP-based GWAS using PLINK [12] with sex, age and 

education as covariates. To facilitate the subsequent enrichment analysis, a gene-level p-

value was determined as the smallest p-value of all SNPs located in ±50K bp of the gene.

2.2 Constructing GS-BC Modules using AHBA

There are many types of prior knowledge that can be used to define meaningful GS and BC 

entities. In the genomic domain, the prior knowledge could be based on Gene Ontology or 

functional annotation databases; in the imaging domain, the prior knowledge could be 

neuroanatomic ontology or brain databases. In this work, to demonstrate the proposed IGEA 

framework, we use gene expression data from the Allen Human Brain Atlas (AHBA, Allen 

Institute for Brain Science, Seattle, WA; available from http://www.brain-map.org/) to 

extract GS and BC modules such that genes within a GS share similar expression profiles 

and so do ROIs within a BC. We hypothesize that, given these similar co-expression 

patterns across genes and ROIs, each GS-BC pair forms an interesting high level imaging 

genetic entity that may be related to certain biological function and can serve as a valuable 

candidate for two-dimensional IGEA.

The AHBA includes genome-wide microarray-based expression covering the entire brain 

through systematic sampling of regional tissue. Expression profiles for eight health human 

brains have been released, including two full brains and six right hemispheres. One goal of 

AHBA is to combine genomics with the neuroanatomy to better understand the connections 

between genes and brain functioning. As an early report indicated that individuals share as 

much as 95% gene expression profile [21], in this study, we only included one full brain 

(H0351.2001) to construct GS-BC modules. First all the brain samples (~ 900) were mapped 

to MarsBaR AAL atlas, which included 116 brain ROIs. Due to many-to-one mapping from 

brain samples to AAL ROIs, there are > 1 samples for each ROI. Following [20], samples 

located in the same ROI were merged using the mean statistics. Probes were then merged to 
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genes using the same strategy. Finally the preprocessed gene-ROI profiles were normalized 

for each ROI. As a result, the expression matrix contained 16,097 genes over 105 ROIs.

We performed a 2D cluster analysis on the gene-ROI expression matrix to identify 

interesting GS-BC modules. First, we calculated the distance matrices for both genes and 

ROIs, respectively. In other words, we computed the dissimilarity between each pair of 

genes, and the dissimilarity between each pair of ROIs, using Equation (1).

(1)

Two dendrograms were constructed by applying hierarchical clustering to two distance 

matrices separately, using the UPGMA (Unweighted Pair Group Method with Arithmetic 

Mean) algorithm. As most enrichment analyses placed constraints on genetic pathways of 

sizes from 10 to 400 [13], we cut the dendrogram at half of its height to build genetic 

clusters (i.e., GSs) whose sizes are mostly within the above range. For the imaging domain, 

we also employed the same parameter to construct ROI clusters (i.e., BCs).

We tested the statistical significance of each GS-BC pair based on a null hypothesis that the 

expression level of a gene is independent from the expression level of other genes across 

relevant brain ROIs in the same GS-BC module, assuming that the average Pearson’s 

correlation coefficients (PCCs) of gene expression levels for genes in the GS-BC module are 

higher than the ones from random GS-BC modules. Thus, for each GS-BC module, we 

constructed another GS-BC module with the same number of randomly selected genes and 

ROIs, and calculated its average PCC (avgPCC), This procedure was repeated N = 1000 

times and the empirical p-value of original GS-BC module was calculated using the 

following equation, where I is an indicator function [7].

(2)

2.3 Imaging Genetic Enrichment Analysis (IGEA)

Pathway enrichment analysis has been extensively employed to genomic domain to analyze 

the genetic findings associated with a specific imaging QT. In this study, our goal is to 

identify high level associations between gene sets and brain circuits, which typically include 

multiple genes and multiple QTs.

In this study, we propose the threshold-based IGEA by extending the existing threshold-

based enrichment analysis. SNP level findings have been mapped to gene level findings in 

Section 2.1. The GWAS findings are a list L of N = NG × NB gene-QT associations, where 

we have a set Gd of NG = |Gd| genes and a set Bd of NB = |Bd| QTs in our analysis. From 

Section 2.2, significant GS-BC modules, where relevant genes share similar expression 

profiles across relevant ROIs, have been constructed. Given an interesting GS-BC module 

with gene set Gk and QT set Bk, IGEA aims to determine whether the target GS-BC module 

T = {(g, b)|g ∈ Gd ∩ Gk, b ∈ Bd ∩ Bk} is enriched in L.
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Now we describe our threshold-based IGEA method. We have N gene-QT pairs from 

GWAS. Out of these, n = |A| pairs (the set A) are significant ones with GWAS p-value 

passed a certain threshold. We also have m = |P| (the set P) gene-QT pairs from a given GS-

BC module, and k significant pairs are from P. Using Fisher’s exact test for independence, 

the enrichment p-value for the given GS-BC module is calculated as:

(3)

2.4 Evaluation of the Identified GS-BC Modules

For evaluation purpose, we tested the statistical significance of the IGEA results. We 

hypothesize that the gene-QT associations from BWGWAS of the original data should be 

overrepresented in certain GS-BC modules, and the BWGWAS results on permuted data 

should not be enriched in a similar number of GS-BC modules. We performed IGEA 

analyses on 50 permuted BWGWAS data sets, and estimated the distribution of the number 

of significant GS-BC modules. The distribution appeared to be normal. Using this normal 

distribution, we estimated an empirical p-value for the number of significant GS-BC 

modules discovered from the original data.

To determine the functional relevance of the enriched GS-BC modules, we also tested 

whether genes from each module are overrepresented for specific neurobiological functions, 

signaling pathways or complex neurodegenerative diseases. We performed pathway 

enrichment tests using gene ontology (GO) biological process terms, KEGG pathways and 

OMIM (Online Mendelian Inheritance in Man) database.

3 Results and Discussions

3.1 Significant GS-BC Modules from AHBA

By performing hierarchical clustering on both genetic and imaging domains, 275 out of 357 

genetic clusters (only those with size ranging from 10 to 400) and 8 imaging clusters (with 

size ranging from 4 to 23, no clusters are excluded) were identified. 2200 GS-BC modules 

were generated by combining each pair of genetic and ROI clusters. After performing 1000 

permutation tests, 610 modules were kept with a p-value ≤ 0.05. We did not use extremely 

stringent statistical thresholds for the selection, to avoid the exclusion of potentially 

interesting candidates. For the BWGWAS results, we obtained 21, 028 × 105 = 2, 207, 940 

gene-QT associations after mapping SNP-based p-values to genes. Out of these, 1679 gene-

QT associations passed the BWGWAS p-value of 1.0E-5.

All 610 constructed GS-BC modules were tested for whether they could be enriched by 

BWGWAS results using IGEA, and 12 of them turned out to be significant after Bonferroni 

correction (see Table 1). We also tested the significance of the number of identified GS-BC 

modules. Compared to permuted results, the analysis on the original data yielded a 
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significantly larger number of enriched GS-BC modules with empirical p-value = 2.6E-2, 

indicating that imaging genetic associations existed in these enriched GS-BC modules.

Across all 12 identified modules, there are 5 and 7 unique GS and BC entities respectively. 

Table 2 lists the 5 unique GSs with gene symbols. Figure 2 shows the 7 unique BCs with 

corresponding ROI names, and Figure 3 maps four of those onto the brain. For example, 

BC01 involves structures responsible for motivated behaviors (e.g., caudate, pallidum, 

putamen) and sensory information processing (e.g., thalamus). BC02 involves various 

frontal regions responsible for executive functions. BC06 includes structures that are major 

spots for amyloid accumulation in AD (e.g., cingulum, precuneus). Details of all 12 modules 

are listed in Table 1. We can find that some modules share common gene sets with different 

brain circuits, and some share the same brain circuits with different gene sets. This 

illustrates the complex associations among multiple genes and multiple brain ROIs.

3.2 Pathway Analysis of Identified GS-BC Modules

To explore and analyze functional relevance of our identified GS-BC modules, we 

performed pathway analysis from three aspects including biological processes, functional 

pathways and diseases using Gene Ontology, KEGG pathways and OMIM diseases 

databases, respectively.

Most identified GSs have a significant functional enrichment, and several can be related to 

the neurodegenerative disease and its development. For instance, calcium signaling pathway 

(from Module #01 and #02) playing key role in short- and long-term synaptic plasticity, has 

shown abnormality in many neurodegenerative disorders including AD, Parkinson’s disease, 

amyotrophic lateral sclerosis, Huntington’s disease, spinocerebellar ataxias and so on [1]. 

There are also several enriched pathways related to oxidative stress, which is a critical factor 

for a range of neurodegenerative disorders. For example, DNA polymerase (from Module 

#04-08) deficiency can lead to neurodegeneration and exacerbates AD phenotypes by 

reducing repair of oxidative DNA damage [18]; glycolysis and gluconeogenesis (from 

Module #04-08) are associated with hypoxia, ischemia, and AD [2]; others like adherens 

junction (from Module #12) and focal adhesion (from Module #03) have also been shown 

disorder-related by indirectly affecting oxidative stress. For the enriched disease results, we 

also find some neurodegeneration-related (like anomalies from Module #01 and #02, 

neuropathy from module #04-08), while a large part of them are cancer-related (like prostate 

cancer from Module #09, #10 and #11). A large body of studies have focused on 

investigating the relationship between cancer and neurodegeneration, with abnormal cell 

growth and cell loss in common. For the GO Biological Process enrichment, various 

Biological Process terms are enriched and can be grouped to 5 categories including cellular 

process, cell cycle, metabolic process, neurological system process and response to stimulus. 

Most of these terms have direct or indirect relationships with neurodegenerative diseases or 

phenotypes.

4 Conclusions

We have presented a two dimensional imaging genetic enrichment analysis (IGEA) 

framework to explore the high level imaging genetic associations by integrating whole brain 
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genomic, transcriptomic and neuroanatomic data. Traditional pathway enrichment analysis 

focused on investigating genetic findings of a single phenotype one at a time, and 

relationships among imaging QTs could be ignored. Such approach could be inadequate to 

provide insights into the mechanisms of complex diseases that involve multiple genes and 

multiple QTs. In this paper, we have proposed a novel enrichment analysis paradigm IGEA 

to detect high level associations between gene sets and brain circuits. By jointly considering 

the complex relationships between interlinked genetic markers and correlated brain imaging 

phenotypes, IGEA provides additional power for extracting biological insights on 

neurogenomic associations at a systems biology level.
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Fig. 1. 
Overview of the proposed Imaging Genetic Enrichment Analysis (IGEA) framework. (A) 

Perform SNP-level GWAS of brain wide imaging measures. (B) Map SNP-level GWAS 

findings to gene-level. (C) Construct gene-ROI expression matrix from AHBA data. (D) 

Construct GS-BC modules by performing 2D hierarchical clustering, and filter out non-

significant 2D clusters. (E) Perform IGEA by mapping gene-level GWAS findings to 

identified GS-BC modules. (F) For each enriched GS-BC module, examine the GS using 

GO terms, KEGG pathways, and OMIM disease databases, and map the BC to the brain.
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Fig. 2. 
Seven unique brain circuits (BCs) identified from IGEA. ROIs belonging to each BC are 

colored in red.
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Fig. 3. 
Brain maps of four brain circuits (BCs) identified from IGEA.
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Table 2

Five unique gene sets (GSs) identified from IGEA.

GS ID Gene symbols

GS01 AASDHPPT, APOC1, APOC4, ARHGAP1, ARMC2, BCR, C16orf74, CHST11, COL25A1, DCLK3, DNAH6, DNAI1, DOCK4, 
DRD1, ELMOD1, ERLIN1, EXD2, EYA1, FAM107A, FAM118B, FZD2, GNAL, GPR6, GPR88, GSTM3, HTR4, HYDIN, IL17D, 
ITPK1, KLF5, MFN2, MIPEP, MLLT3, MMD2, MTHFD1, MYB, NCKAP1, NSUN3, PALM, PDE1B, PDYN, PFDN6, PHF21B, 
PPP1R1A, RAP1GAP, RGS14, RGS20, RNF44, SLC17A8, SLC2A4, STYXL1, TRIM69, UBQLN4, UBR7, VAX1, WNT8A, 
ZC3HAV1L, ZMAT2, ZNF883

GS02 ACSS1, CPLX1, CSMD2, DDX4, ITGB3, LRIG1, METTL7A, NDRG2, NPAS4, PDIA6, PLA2G5, POTED, PPARGC1A, PSD2, 
PXDNL, TFCP2L1, USH2A, VEGFA

GS03 ADPRHL2, ADRM1, AKR1A1, ANAPC2, AP4M1, AP5Z1, APBB1, APBB3, ARFGAP3, ARMC6, ASL, ATP5B, AUP1, 
AURKAIP1, B4GALT3, C17orf59, CAPN1, CCS, CCT3, CDIPT, COG4, CPNE1, CSNK2B, CSTF1, DAPK3, DDX21, DECR2, 
DEPDC5, DHPS, DHX16, DHX38, DNAJC30, EIF2B4, EIF2B5, ELOF1, ERAL1, FAM50B, FAM96B, FLII, GALK1, GGNBP2, 
GPAA1, GPATCH3, GPI, GPR137, HEXIM2, HN1, HOOK2, HPS6, IFFO1, KAT5, KHK, KLHL22, LDLR, LRSAM1, LZTR1, 
MAF1, MAGEF1, MFSD10, MMS19, MRPL38, MRPL54, NARFL, NCAPH2, NCLN, NISCH, NRBP1, NTHL1, PHB2, PI4KB, 
PIH1D1, POLD2, POLG, PPOX, PRDX2, PRMT1, PRPF31, PTBP2, PTOV1, RABGGTA, RALY, RPS19BP1, RRN3, SH2B1, 
SLC25A42, SLC41A3, SMPD1, SNRPA, SSNA1, STK19, STUB1, SULT1A1, TCEA2, TCEB3, TMED3, TMEM106C, 
TMEM161A, TOMM40, TRMU, TRPC4AP, TTC27, TUSC1, TXN2, TXNL4B, UBR4, YTHDF2, ZFAND2B

GS04 AIPL1, AP1M2, ARRDC5, CD1C, CST1, DEFB113, DEFB126, EPGN, FBP2, FGF19, FNDC7, FRG2, GPRC5D, IL22, INMT, 
KCNK18, KIF18A, KLRG2, KRT79, MBD3L2, MMP7, MS4A1, MS4A3, MSMB, NEIL3, OR13C3, OR1M1, OR4F15, OR51I2, 
OR5AN1, OR5AR1, OR5M1, OR7G3, PDZK1IP1, PRAMEF8, PTCHD3, RLN1, SIRPD, TBX20, TEDDM1, TGM3, TIAF1, 
TIMD4, TM4SF19, TM4SF20, TMC1, TPD52L3, WFDC13, XDH, ZFP42

GS05 ALDH9A1, ANKFN1, APOE, ATP6V0A4, BIN1, C11orf65, C15orf52, C1orf64, CD81, CDH1, CNN3, ECSCR, EDNRB, ENG, 
FAM84B, GGT5, GIMAP5, GPR137B, GREM1, GSTM2, GTF2F2, HRASLS2, ID1, LMO2, MAPKAPK3, MARCH10, PARP4, 
PAWR, PGR, PHF10, PLSCR4, PMAIP1, POLI, PRDX1, RAB13, RGS22, SDS, SLC2A1, SLC40A1, SMAD9, STX18, SULT1C4, 
SVOPL, TIE1, TM4SF18, TMEM204, TRIP6, TST, WASF2, WFDC3, WRB, WWC2
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